
An Introduction to
ZooKeeper (ZK)

Prof. Wing C. Lau
Department of Information Engineering

wclau@ie.cuhk.edu.hk

ZooKeeper – Distributed Process Coordination, by Flavio Junqueira, Benjamin Reed, Published by O’Reilly, Nov. 2013.

ZK 2

Acknowledgements

n The slides used in this chapter are adapted from the following
sources:
n Roy Campell, “Paxos and ZooKeeper,” Lecture notes of CS498 Cloud

Computing, UIUC course, Spring 2014.
n All copyrights belong to the original authors of the materials.

ZK 3

What is ZooKeeper?
n A highly available, scalable service to support Distributed

configuration, Consensus, Group Membership, Leader
Election, Naming, and Coordination

n Difficult for Users to implement these kinds of services
reliably
n brittle in the presence of change
n difficult to manage
n different implementations lead to management complexity when the

applications are deployed
n Originally developed by Yahoo! ; subsequently under

Apache license: http://zookeeper.apache.org/

http://zookeeper.apache.org/

ZK 4

The Data Model of ZooKeeper
(in form of a Special distributed filesystem tracked

by ALL servers in a ZooKeeper service)
§ Hierarchical Namespace
§ Each node is called “znode”
§ UNIX-like notation for path
§ Each znode has data(stores data in

byte[] array) and can have children
§ Znode

n Key Object for keeping/realizing the
Consistent Distributed State info

n Maintains “Stat” structure with version
of data changes , ACL changes and
timestamp

n Version number increases with each
change

ZK 5

ZooKeeper Service

n All servers store a copy of the data, logs, snapshots on disk
and use an in memory database

n A leader is elected at startup
n Followers service clients
n Update responses are sent when a majority of servers have

persisted the change

ZooKeeper Service

ServerServer ServerServerServerServer
Leader

Client ClientClientClientClient ClientClient

ZK 6

How applications use the ZooKeeper services

ZK 7

Client API
Very similar to “standard” Filesystem access API:
nCreate(path, data, flags)
nDelete(path, version)
nExist(path, watch)
ngetData(path, watch)
nsetData(path, data, version)
ngetChildren(path, watch)
nSync(path)
nTwo version synchronous and asynchronous

ZK 8

Zookeeper Service
n Watch Mechanism

n Get notification
n One time triggers

n Other properties of Znode
n Znode is not designed for data storage, instead it stores

meta-data or configuration
n Can store information like timestamp version

n Session
n A connection to server from client is a session

n ZK also supports a Client to actively switch its connection to a
different server while preserving the SAME Session

n Bulit-in timeout mechanism
n IMPORTANT: Ordering Guarantees by ZK are only valid

for exchanges WITHIN the SAME Session ;
n Special Care is needed to handle Broken (time-out) Sessions !

ZK 9

Properties Guaranteed by ZooKeeper
n Single System Image

n The SAME client will see the same view of the service no matter
which server it connects to ;

n Different Clients may see a different (delayed) version of the view
though ;

n Durability - once an update has been applied, it will persist from that
time forward until a client overwrites the update.

n High Availability - 2F+1 servers can tolerate F crash failures
n Timeliness – The client’s view of the system is guaranteed to be up-

to-date within a certain bound delay.
n By setting the “watch” flag in a Read request, a client will get

notified of a change to data it is watching within a bounded period of
time.

n Either system changes will be seen by a client within this bound or
the client will detect a service outage

n There are corner cases that intermediate state-changes can be
missed by a particular client due to the “one-time-trigger” notion of
watch (see p.g. 70 of the ZK book)

ZK 10

Properties Guaranteed by ZooKeeper
n FIFO per Client Order

n All requests of the SAME client will be applied/ processed in the order
they were sent.

n Ordering of notifications & state changes to/from a Client are guaranteed
n All Clients will observe “parallel” writes issued by different

Clients (causing ZooKeeper to Change some global state) in
the SAME order ;
n Realized using the Zookeeper Atomic Broadcast (ZAB) protocol/

algorithm (http://research.yahoo.com/files/ladis08.pdf)
n ZAB is inspired by, but different from, the Paxos algorithm
n Reads issued by different clients on the same written variable can be

different though (due to delay in state propagation to different ZK
servers) !

n Atomicity - updates either Succeed or Fail, no partial results
n File API without partial reads/writes
n Simple wait free data objects organized hierarchically as in filesystem.
n “Multi-hop” construct to support atomic (i.e. all or nothing) execution of a

block of multiple commands/requests

http://research.yahoo.com/files/ladis08.pdf

ZK 11

Guarantees of the Zookeeper Atomic Broadcast
(ZAB) Protocol run amongst ZK servers

n Replication Guarantees
n Reliable Delivery – If a transaction, M, is committed by one server, it

will eventually be committed by ALL servers.
n Total Order – If Transaction A is committed before Transaction B by

one server, A will be committed before B on ALL servers. If A and B
are committed messages, either A will be committed before B or vice
versa, i.e. A & B cannot be committed at exactly the same time !

n Casual Order – If Transaction B is sent after Transaction A has been
committed by the sender of B, A must be ordered before B. If a
sender sends C after sending B, C must be ordered after B.

n Transactions are replicated as long as majority (quorum) of
servers are up

n When servers fail and later restarted – it should catch up the
transactions that were replicated during the time it was down.

Note: Under ZK, clients of the ZK services need to resync state
with its ZK server once their session is broken (time-out)

ZK 12

Examples of ZooKeeper primitives
n Simple Lock

n Create a znode L for locking
n If one gets to create L he gets the lock
n Others who fail to create watch L
n Problems: herd effect

ZK 13

Examples of ZooKeeper primitives
n Simple Lock without herd effect

ZK 15

Examples of ZooKeeper primitives
n Leader Election

n Any process which wants to be a leader will try to create
(write) a znode, say /leader, with the EPHEMERAL flag ;

n If multiple processes try at the same time, only the 1st
one can complete the write successfully while all others
will fail (because /leader node already exists as all writes
are observed by the servers in the same order) ;

n The other processes, after failing their write attempt, can still do
a read on the /leader znode with the “watch” flag set.

n When the current leader crashes or terminates its session
explicitly, the znode /leader will disappear and all “watching”
processes will get notified.

=> This scheme works but may have poor performance due to the
so-called “herd” effects ! Why ?

ZK 16

Examples of ZooKeeper primitives
n Configuration Management

n For dynamic configuration purpose
n Simplest way is to make up a znode c for saving

configuration.
n Other processes set the watch flag on c
n Due to the “One-time trigger” nature of ZK notification, a

notification just indicates there is at least one update
without telling how many time updates occurs

ZK 17

Examples of ZooKeeper primitives
n Rendezvous

n Configuration of the system may not be sure at the
beginning

n Create a znode r for this problem
n When master (leader) starts, it will fill the configuration in

r
n Workers watch node r
n Set to ephemeral node

ZK 18

Examples of ZooKeeper primitives
n Group Membership

n The Leader creates a znode g
n Each group member process creates a znode for itself

under g in ephemeral mode
n Watch g for group membership changes

ZK 19

Examples of ZooKeeper primitives
n Double Barrier

n To synchronize the beginning and the end of
computation

n Create a znode B, and every process needs to register
on it, by adding a znode under B

n Set a threshold that start the process
n Processes enter the barrier when # of child znodes

exceeds the threshold (by watching on B)
n When a process is done and ready to leave, it removes

its child znode in B.
n Processes can leave the barrier when every process has

removed its child znode under B ; (by watching on B)

ZK 20

ZooKeeper Application Example
n Fetching Service

n Using ZooKeeper for recovering from failure of masters
n Configuration metadata and leader election

ZK 21

ZooKeeper Application Example
n Yahoo Message Broker

n A distributed publish-subscribe system

ZK 22

Additional ZooKeeper Use cases

n Configuration Management
n Cluster member nodes Bootstrapping configuration

from a central source
n Distributed Cluster Management

n Node Join/Leave
n Node Status in real time

n Naming Service – e.g. DNS
n Distributed Synchronization – locks, barriers
n Centralized and Highly reliable Registry

ZK 23

Summary of ZooKeeper

n An Open source, High Performance
coordination service for distributed applications

n Centralized service for
n Configuration Management
n Locks and Synchronization for providing

coordination between distributed systems
n Naming service (Registry)
n Group Membership

n Features
n Hierarchical namespace
n Provide Watcher on a znode
n Allow to form a cluster of nodes

n Support a “large” volume of requests for data
retrieval and update

Source : http://zookeeper.apache.org

